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Expert investigators bring advanced skills and deep experience to analyze visual evidence, but they face limits
on their time and attention. In contrast, crowds of novices can be highly scalable and parallelizable, but lack
expertise. In this paper, we introduce the concept of shared representations for crowd–augmented expert work,
focusing on the complex sensemaking task of image geolocation performed by professional journalists and
human rights investigators. We built GroundTruth, an online system that uses three shared representations—a
diagram, grid, and heatmap—to allow experts to work with crowds in real time to geolocate images. Our
mixed-methods evaluation with 11 experts and 567 crowd workers found that GroundTruth helped experts
geolocate images, and revealed challenges and success strategies for expert–crowd interaction. We also discuss
designing shared representations for visual search, sensemaking, and beyond.
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1 INTRODUCTION
High-stakes settings like investigative journalism and human-rights advocacy increasingly leverage
photo and video evidence from social media in their investigations [15, 32, 75]. For instance, in 2017,
Europol launched the Stop Child Abuse: Trace An Object campaign [5] that relies on volunteer
crowds to help identify the origin of objects in the backgrounds of imagery (photos and videos)
involving child abuse. Similarly, Bellingcat, an online open-source investigative community, uses
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social media imagery to investigate the credibility of claims made by and about governmental or
terrorist activity [36].

Uncertainty in image provenance raises questions about whether the imagery has been altered
or is being reused. This uncertainty affects the credibility of the imagery and subsequently harms
its efficacy as a form of evidence, whether in the court of law or of public opinion. If these images
are to be used as evidence, verification is critical [32, 75].

A key step in this verification process is image geolocation, a complex sensemaking process that
involves identifying the exact location where photo or video imagery was taken [36, 46]. If an
expert investigator succeeds in geolocating an image, then it can reliably be used to make claims
about an event that happened at a particular place and time. Initially, an expert inspects the image
for clues, such as familiar landmarks, license plates, street signs, etc., to narrow their search. When
these clues are not conclusive, they use inference and experience to conduct a manual, brute-force
search through large swathes of satellite imagery, looking for the location depicted in the image
[36]. This task may take hours to days, and may not prove fruitful. It also does not scale easily
[7, 19], meaning that successful geolocation is limited by experts’ time and attention. Computer
vision attempts at automating this process [33, 85, 87] are insufficiently accurate, placing photos
within within 200km of the correct location less than 30% of the time. Further, they have constraints
that may not generalize well for many real-world contexts [14].

An alternative approach that has seen success is leveraging the powerful and adaptive capabilities
of geographically distributed online crowds [1–5, 78]. However, crowds often lack expertise in
knowing where to look or how to assess relevance, which can lead to false positive rates as high as
64.1% [46]. Undirected crowds can also lead to vigilantism [83, 93] and misidentification [63]. The
question then arises, can crowds effectively augment expert work practice to geolocate images?
In this paper, we propose an approach that combines experts’ deep domain knowledge and

experience with the speed and scale of crowds. To enable this approach, we extend Heer’s idea
of shared representations between humans and intelligent agents [35], and use it to facilitate
crowd-supported expert image geolocation. Heer describes shared representations as a common
language through which both humans and intelligent agents can work in tandem to achieve a
shared objective, balancing the complementary strengths and weaknesses of each. This approach
is relevant to crowd-supported expert work practice because it augments but does not replace
experts, while still promoting efficiency and correctness, and it requires “neither perfect accuracy
nor exhaustive modeling of the user’s tasks to be useful” [35].

We explore this approach through GroundTruth, a system we developed to help experts geolocate
images with a crowd. GroundTruth consists of three shared representations as system components:
(1) an expert-created aerial diagram to help share context with the crowd, focus their attention, and
overcome their spatial reasoning limitations; (2) a gridded map overlay specified by experts that
generates microtasks for crowd workers, indicating where they should search, while providing the
expert an overview of crowd progress; and (3) a heatmap displaying expert and crowd decisions
which quickly and at-scale indicates to the expert where their own time and attention is best spent.

We conducted a mixed-methods evaluation of GroundTruth involving a think-aloud protocol,
log analysis, and semi-structured interviews with 11 experts working with 567 crowd workers.
We find that GroundTruth effectively merges the benefits of both expertise and crowdsourcing,
demonstrating the feasibility of crowd-supported expert image geolocation using shared repre-
sentations. Experts worked with crowds in real-time to narrow the search area substantially, and
frequently succeeded in geolocating the image. Experts were also excited by the idea of incorpo-
rating GroundTruth into their toolset since it provides features that are not currently available in
other tools. Finally, we reflect on challenges and successes in designing shared representations
highlighted through our evaluation.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 0. Publication date: November 2019.



GroundTruth: Augmenting Expert Image Geolocation 0:3

In summary, our work makes four contributions:
(1) Our paper makes a technical contribution by introducing shared representations in crowd-

supported visual search, allowing visual traits and context to be easily communicated between
experts and novice crowds performing a complex sensemaking task: image geolocation.

(2) GroundTruth makes a system contribution as an operationalization of shared representations
that enables expert investigators to geolocate images with the help of crowds. This is done
using three shared representations: an aerial diagram, a gridded map overlay, and a heatmap
displaying experts’ decisions and real-time crowd feedback.

(3) A mixed methods evaluation with expert investigators, who drew their own aerial diagrams
and worked with crowds in real time to geolocate images. Experts expressed an overall
preference for GroundTruth over current expert work practice and tools. Our evaluation
finds that shared representations support new collaborative work dynamics.

(4) We further develop implications for enriching expert–crowd collaboration in investigative
work, and applying shared representations to complex tasks beyond visual search, which are
currently only the purview of experts.

2 BACKGROUND
To provide context for our system and evaluation, we first summarize expert image verification
and geolocation workflows. Although there are empirical studies of verification in general [14, 74],
image geolocation has seen less scholarly attention [45, 60]. Therefore, we draw on practitioner
accounts [10, 32, 36, 75] to fill gaps in the limited scholarly record. We also relate these existing
practices to sensemaking theory [67] and identify challenges that motivated our design rationale
and system development.

2.1 Current Expert Practice in Image Geolocation
Experts in many investigative fields, such as journalism, human rights, and military intelligence,
perform image geolocation as a key step in the broader task of verifying photos and videos shared
on social media. The goal is to identify the precise location where the image was captured, to help
support or refute claims about its provenance and meaning.

Experts perform image geolocation using a largely manual process characterized by iteratively
narrowing down possibilities to find a needle in a haystack. They start with a photo that they want
to geolocate, obtained through social media or by received from clients. Next, they examine the
surrounding context and metadata of the image, researching the user who posted it and the claims
made about it. Most social media platforms scrub metadata, including geotags, for uploaded content
as a privacy measure, which is why experts focus their attention on the actual visual content of
the images [75]. Experts look for road signs, business names, phone numbers, unique landscape or
architectural features, or other clues that could point to certain locations or rule out others. If this
step does not sufficiently narrow down the location, experts may resort to a brute-force approach
of manually searching satellite imagery in candidate locations for potential matches. Experts often
draw an aerial diagram of the ground-level photo of interest to ease visual comparison [36]. This
“translation” process requires expertise in spatial reasoning and mental rotation which experts
develop over time [60].

2.2 Expert Image Geolocation as Sensemaking
The process of image geolocation, and image verification more generally, can be understood as a
sensemaking task, in which the goal is to gather and analyze large amounts of diverse, unstructured
information to arrive at a theory or conclusion [23, 67, 69]. One influential model by Pirolli and
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Fig. 1. Expert image geolocation as sensemaking. The orange dotted arrow indicates one possible set of
steps that an image verification expert would undertake to debunk or verify visual media through image
geolocation. We relate these steps to Pirolli and Card’s sensemaking loop for intelligence analysts [67] (inset).
See Section 2.2 for an example.

Card [67] characterizes sensemaking as a 16-step, iterative process with two key subloops, one
focused on gathering, searching, and extracting information (foraging); the other on building a
mental model that best fits the information (synthesis); with structure and effort increasing in later
steps. In our example below, we relate the steps of geolocation back to the sensemaking steps as
defined by Pirolli and Card [67] (see Fig. 1). Half the steps (15, 12, 9, 5, 3) are top-down, moving
from theory to data, while the other half (2, 5, 8, 11, 14) are bottom-up, creating a “dual search”
cycle between adjacent steps.

Applying this model to an image geolocation example, suppose an expert investigates a photo that
they encountered on social media purporting to show evidence of a violent protest in an unidentified
German city. This claim may provide they with an initial top-down hypothesis. However, as they
inspect the visual content, clues in the road signage and building architecture instead suggest
Austria, providing a bottom-up challenge to the initial hypothesis. On one building, the expert
notices a distinctive but unfamiliar logo (step 5: read and extract). They run a reverse image search
(3: search for information) which yields a large number of results (1: external data sources). Sorting
through these (2: search and filter), they find a match for a business with multiple offices in three
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cities in Austria (6: search for relations). They then draw an aerial diagram of the photo of interest
(8: schematize) and manually search satellite imagery from each city (9: search for evidence), one
at a time. Four hours later, they locate the matching building in one of the cities. This discovery,
along with other contextual evidence (11: build case), allows them to debunk the original claim of
Germany (14: tell story), based on which they writes a news report (16: presentation).
This paper focuses on the latter steps of the geolocation task, when the expert must search

satellite imagery using a manual, brute-force process. Looking through large areas can take hours
or even days, with no guarantee of success. Fatigue, coupled with the time-crunched nature of this
work, is a major challenge because constant vigilance is required to find a needle in a haystack.
There is some evidence that image geolocation experts [45] (along with other journalists and
investigators [19, 93]) seek crowdsourced assistance, but little technological support exists, and
their success rates are unknown. To address this research gap, we investigate how experts respond
to crowdsourced support in image geolocation.

3 RELATEDWORK
3.1 Collaborative Sensemaking and Visual Search
3.1.1 Collaborative Sensemaking. Collaboration has the potential to speed up sensemaking by
dividing up foraging and search tasks, as well as providing multiple perspectives on schematizing
and theorizing about connections, among other benefits [23]. However, collaboration also creates
coordination challenges. For example, collaborators may have different skills and backgrounds, be
geographically separated, need to externalize their thoughts for others, and have access to different
parts of the dataset [22, 24, 27, 38]. Most of these efforts focus on small groups, i.e., dyads [27–29, 38]
or triads [72, 92].
However, less work has explored scaling up collaborative sensemaking to a larger number of

people, such as crowd workers, where coordination challenges are amplified [80]. Some projects
have focused on crowdsourcing specific sensemaking steps as microtasks, such as searching and
filtering [66], reading and extracting [16], or schematizing [18, 43, 56]. Others crowdsourced
the entire sensemaking loop to perform complex tasks like solving mysteries [54, 80] or writing
articles [31, 44]. While most of these efforts focus on how either novice crowds alone or crowd–AI
hybrids can complete sensemaking tasks, our system differs by exploring how crowds can augment
an expert’s sensemaking process. Further, while the majority of crowd sensemaking research
focuses on text data [e.g., 9, 16, 31, 43, 56, 80], we focus on visual data.

3.1.2 Crowdsourced Visual Search. Prior work on crowdsourced visual search has largely focused
on satellite imagery. The focus is often on counting or annotating things (e.g., clouds [94], building
damage [39], tanks [68]). Sometimes the focus is searching for a specific needle in a haystack, like
Genghis Kahn’s tomb [55] or the boat of missing computer scientist Jim Gray [2]. These projects,
as well as ours, divide up an area of satellite imagery into smaller cells and ask crowds to conduct a
visual search for objects, buildings, etc.

In our prior work [46], we asked crowds to help geolocate an image by searching through satellite
imagery using either the ground-level photo or an aerial diagram. Likewise, our system here tasks
crowds with searching through satellite imagery using aerial diagrams to support experts. While
the previous study used a controlled experiment and perfect diagrams to determine an upper-bound
on crowd performance, this paper explores the real-world feasibility of crowds using expert-drawn
diagrams, bigger search areas, and more diverse test photos.
Furthermore, all of the above projects focus on crowd performance and did not involve actual

expert investigators. In contrast, our work here focuses on an expert-driven system, GroundTruth,
that aggregates and visualizes the crowd’s results and incorporates it into an expert’s workflow in
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real time. Also in contrast to prior work, our evaluation focuses on how these experts respond to
crowd feedback and integrate it into their own investigative activities.

3.2 Requester–Crowd Interaction Models
Early crowdsourcing focused on a relatively simple model where a requester posted a task and
returned later, after the task was completed, to review results. The introduction of the waiting
room or retainer model allowed requesters to receive results in near real-time [11, 49, 50]. This
fast turnaround time enabled new, richer modalities of interaction between requesters and crowds,
such as clarification of ambiguous task instructions [13, 58], workflows [47], or conversations
with multiple exchanges [51]. Like this last class of systems, GroundTruth leverages real-time
crowdsourcing (via LegionTools [25]) to quickly return crowd results to the requester, a key
requirement for image verification tasks that are often time-sensitive.
Most similar to our work, a subset of real-time crowdsourcing systems support what we term

crowd-augmented expert work. This model assumes that (1) requesters are experts in some domain
(e.g., animation, innovation, design), (2) requesters are simultaneously performing the same (or a
superset) of tasks as the crowd, and (3) the expert’s own work is shaped and redirected based on
the crowd results streaming in real-time. Crowdboard [8] explored whether online crowds could
augment expert ideation in a hybrid physical–virtual studio. Apparition [48, 52] and SketchEx-
press [53] enabled crowds to prototype user interfaces and animations drawn or described by expert
designers. Inspired by these prior works, GroundTruth extends the crowd-augmented expert work
paradigm to visual search tasks, specifically image geolocation. Our focus on visual search, a type
of analytic task, complements prior work in this area largely focused on creative and expressive
tasks, which pose distinct challenges [21].

3.3 Visualization and Shared Representations
A variety of technological solutions have been explored for improving coordination in collaborative
sensemaking. One theme has been to use tools like visualizations and tabletop displays to help
collaborators externalize their ideas in ways that are easily shared and aggregated with others [22,
27–29, 92], though these tools are geared towards lengthy sessions with 2–3 collaborators, not
crowds and microtasks. Likewise, as crowdsourcing workflows have become more complex, new
tools have helped requesters to monitor and interpret crowd work, often with dashboards and
visualizations [13, 42, 47, 57, 70, 90]. Inspired by these, GroundTruth also leverages visualizations
to aggregate and display crowd results to the requester.
However, unlike these works, in which requesters typically wait extended periods of time to

review work performed entirely by the crowd, GroundTruth’s crowd-augmented expert workflow
has crowds provide feedback in real-time, while an expert performs the same (and superset of)
tasks. Most similar to our work, Crowdboard [8] provided two versions of an interactive workspace:
“studio” for in-person experts, and “web” for online crowds; while Apparition [48] provided a
“shared canvas” which showed or hid editing tools depending on roles assigned to experts and
crowds. While these interfaces proved effective in their respective task domains, it is unclear how to
adapt the underlying principles for an analytic task involving visual search of geographic regions.
Consequently, we adapt a concept from mixed-initiative systems, shared representations [35],

that suggests concrete design principles for collaborative analytic work, such as data analysis
and sensemaking. We detail how we adapted these principles for crowd-augmented expert image
geolocation in the following section.
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4 GROUNDTRUTH
4.1 Design Rationale for Shared Representations
Heer’s [35] shared representations, adapted from Horvitz’s guidelines for mixed-initiative sys-
tems [37], enable people and agents of varying abilities to work together to achieve a common
objective. They enable a user to direct tasks, performing a superset of the agents work. In parallel,
the agent can support the user’s foraging tasks. This allows for the merging of the agent’s scale
and speed with the user’s deep domain knowledge and skills.

Building on these ideas, we explored whether shared representations could inform the design of
a system to support image geolocation in which expert work was augmented by human crowd
workers rather than AI agents. To do so, we employed an iterative design process with expert
investigators over the span of eighteen months, along with pilot studies. From these efforts, we
developed three types of shared representations, each motivated by one of Heer’s principles [35].
(1) Heer’s first principle encourages augmentations that “provide significant value, promoting

efficiency, correctness, and consideration of alternate possibilities that a user might not have
otherwise considered.” We adapted this idea for expert–crowd interaction as a shared lens. In
GroundTruth, this takes the form of an expert-drawn aerial diagram. The aerial diagram is a
shared lens into what the expert believes is relevant in a satellite image search, and indicates
to the crowd what to look for. It bootstraps existing expert practice of aerial diagramming
and overcomes the crowd’s limited spatial reasoning skills, allowing them to support experts
at-scale and promote consideration of alternatives.

(2) Heer’s second principle emphasizes automated suggestions that “augment, but do not replace,
user interaction” and “blend into the interactive experience in a nondisruptive manner and
can be directly invoked or dismissed” by the user. We adapted this idea as a shared environment
between experts and crowds that, for GroundTruth, takes the form of a gridded map overlay.
The grid structures the search area, telling the crowd where to look, and divides it into
smaller cells (microtasks) for them to easily provide feedback. The grid lets experts direct
investigations, and work with the crowd in a nondisruptive, dismissable manner. That is,
the expert performs tasks that are the same as—and a superset of—the crowd’s, working
alongside them in real time.

(3) Heer’s third principle encourages augmentations that “require neither perfect accuracy nor
exhaustive modeling of the user’s task to be useful.” We adapted this idea for expert–crowd
interaction as shared analysis. In GroundTruth, this takes the form of a heatmap. The heatmap
enables shared analysis between experts and crowds to locate the ground-level photo (and
aerial diagram) within cells of satellite imagery. The heatmap aggregates crowd feedback to
prioritize expert attention and allows experts to easily exclude cells as they conduct their
search in parallel. Although crowds prioritize some false positives, they also rule out many
irrelevant cells, providing value to experts despite imperfect accuracy.

4.2 System Description and Scenario
GroundTruth consists of two different interfaces for the three shared representations (aerial diagram,
grid, heatmap). The expert interface allows an expert to define and manage a geolocation task,
where the expert uploads the ground-level photo and aerial diagram, and specifies the search space
(for both them and crowd workers) by drawing the grid. The crowd worker interface allows crowd
workers to perform geolocation microtasks specified by the expert, using the aerial diagram.

We now describe the expert and crowd worker interfaces in detail using the following fictional
scenario based on a real-life event [82]. Noor is an investigative journalist who works for an online
intelligence group that investigates war crimes. Late last night, the Turkish Air Force bombed the
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city of Aleppo, and a few seconds of footage of this bombing was released by Turkish state-run
press. Located two thousand kilometers away, Noor does not have access to drone footage; and
with the recentness of the event, updated satellite imagery is unavailable. To confirm the video’s
authenticity, Noor must verify that these air strikes did indeed occur in Aleppo. Under a time
crunch, Noor decides to use GroundTruth to help her geolocate the imagery depicted in the video.

4.3 Expert Interface
Step 0: Drawing the aerial diagram. Upon logging in, Noor is asked to upload two images: a

photo to be geolocated, and an aerial diagram that represents a bird’s-eye view of the photo, which
will help both her and crowd workers easily find matching satellite imagery. She first captures a
screenshot from the video, and uploads it. Then, using Adobe Photoshop, she starts to draw an
aerial diagram of the photo that she wants to geolocate (e.g., the photo on the top left in Fig. 2).
She decides to include roads, the outlines of unique buildings, and trees (which are rare in Aleppo),
and then uploads it. GroundTruth uses a digital photo format, thus allowing an expert to draw the
aerial diagram by hand or using any number of digital tools. Then, Noor specifies the width of the
diagram she has drawn in meters or feet.

Next, she is shown a two-panel interface (Fig. 2), with tooltips and interface elements that change
depending on which of three steps she is currently in. The three steps are: (1) navigating to the
correct location on the map, (2) drawing the search area, and (3) filtering through crowd feedback
on the heatmap. On the left, placed within a tabbed view, are the ground-level photo and aerial
diagram, along with rotate, pan, and zoom controls. On the right is a Google Maps map, with
controls to zoom in/out, and to toggle the satellite/map view.

Step 1: Narrowing the search area. Noor needs to verify that the air strikes took place in Aleppo.
She has narrowed down the location to area of several square kilometers, in the northwest corner
of the city, based on news reports and contextual clues associated with the ground-level photo.
Noor thus navigates to this location using the embedded search bar on the map.

Fig. 2. Expert interface during George’s session. The correct location is located in the dark green cell on the
bottom right. Priority (agreement) in the color legend corresponds to the number of crowd workers (out of 3)
who said that the satellite imagery in the cell matched the aerial diagram. For details, please see Section 4.5.
Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 0. Publication date: November 2019.
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Fig. 3. Crowd worker interface. Note that this is a reproduction of what a real crowd worker would have seen
during George’s session, and includes the same aerial diagram that he created.

Step 2: Drawing the search area. Next, Noor delineates the search area that she thinks contains
the photo by clicking on the Draw Search Area button, and then clicking and dragging the mouse
cursor to draw opposing corners of a rectangular gridded map overlay. In practice, the area can
be as large, or as small as one would like, based on constraints such as time, cost, the number of
crowd workers available, etc. Next, the system automatically divides the search area into a grid
of equally sized regions. Each region consists of a 4×4 grid of 16 cells, each of which are the same
width as the aerial diagram provided by Noor, to allow for 1:1 comparison. Three crowd workers
are asked to compare each cell to the aerial diagram provided by Noor.

Step 3: Analyzing crowd feedback. Now, Noor can begin to search through the map with the grid
overlaid on top of her target search area. In parallel, she recruits people on Amazon Mechanical
Turk (MTurk) to help. She takes their feedback into account as it begins to stream in and is displayed
as a heatmap. On the left panel, there is a color legend that indicates the number of crowd workers
that said the cell matched the aerial diagram provided. The colors correspond to the number of
Yes/Maybe judgements (between 0 to 3). Next to this is text that alternates between Pan Mode and
Inspection Mode. Pan Mode is the default mode where Noor can pan across and zoom into or out
of the map. In Pan Mode, she can give up on the search using the Give Up button, or hide crowd
feedback with the Hide Color button. If she continues to zoom in, until only one cell takes up 80%
of the map, she enters Inspection Mode. Here, two new buttons are added: clicking the Exclude
Cell button excludes a cell from the search, and clicking the Found It button indicates that she has
found the cell that matches her image. Even when she hides crowd feedback, her decisions are still
visible, in line with Heer’s second principle.

The crowd, noticing that Noor’s diagram contains several trees, quickly eliminate cells of satellite
imagery that do not contain them. When they encounter cells that contain trees, they attempt to
carefully match it to the buildings that she has represented in the aerial diagram. Within minutes,
the crowd has narrowed down the search area by 50%, highlighting areas that she should pay
attention to and prioritize. She inspects three cells, and finds that one of them matches the aerial
diagram. She clicks on the Found It button to end her search, having successfully geolocated and
verified an airstrike that took place in Aleppo, Syria.
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4.4 CrowdWorker Interface
The crowd worker interface consists of three columns. The left one shows only the aerial diagram
drawn by Noor, and is randomly rotated to avoid imposing an orientation. The crowd is given
only the aerial diagram because crowd performance is better, in comparison to being shown only
the ground level photo or both [46]. A crowd worker can rotate, zoom, and reset the image to its
original position using the buttons underneath the image. On the right is a small mini-map of
the crowd worker’s search region consisting of 16 smaller, equally-sized cells (4×4 grid). In the
middle, there is a single cell, shown in a Google Maps satellite view, and workers are prevented
from panning outside this cell. The worker can click on the green Yes/Maybe button if the satellite
cell potentially matches the aerial diagram, or a red No button if it does not. Their judgment is
reflected on the mini-map where the corresponding cell is either colored green or red, respectively.
Once sure of their choice, they can click on the Next button. Then, the satellite view advances to
the next cell following a Creeping Line search pattern used by search and rescue professionals
[91]. Once the crowd worker provides feedback for all 16 cells, they can submit the task to MTurk.
GroundTruth also allows experts to recruit crowd workers from social media or other sources.
In either case, a single URL is provided and the system automatically directs them to a region to
perform the geolocation microtask.

The crowd worker interface for GroundTrtuh (Fig. 3) is based on our prior work [46], where we
designed a technique and an interface to facilitate crowd-supported image geolocation and there
was no expert interface present. The crowd worker interface here differs from our prior work [46]
in several ways. First, to streamline visual comparison, we increased the size of the diagram to
match the size of the satellite image cell. Because of this layout change, we moved the mini-map to
the top right. We also added buttons to allow the user to zoom in and out of the diagram and reset
its position. All other parts of the interface are visually similar.

4.5 Implementation Details
We built GroundTruth using the Django web framework, a PostgreSQL database, and the Google
Maps API for displaying satellite imagery, drawing the grid, and displaying the heatmap of expert
and crowd decisions. The gridded map region is drawn using Google Maps’ Shapes API, by clicking
and dragging the mouse cursor across the map to delineate a rectangular bounding box representing
the area under investigation. Next, GroundTruth divides the bounding box into equally sized regions,
composed of equally sized 4×4 cells whose height and width are defiend by the expert when they
specify the cell/diagram width. However, if it cannot be divided equally, it is resized so that it can
be. Each region and corresponding cells are stored in the database. Due to the map projection used
by Google Maps, cells do not appear square unless they are near the equator. As workers load the
crowd worker interface, they are redirected to a specific region, i.e., a subset of the grid.

Their feedback for each cell is stored individually in the database as a judgement. On the expert
interface, the system queries the database to see if three judgements have been made for a cell
(by three workers). If so, the number of Yes/Maybe judgements is calculated based on the number
of workers that said the cell matched the diagram by clicking the Yes/Maybe button. Each cell
is colored based on how many workers clicked Yes/Maybe, using the one-yes rule, described in
Section 5.5. A cell is only colored once three crowdworkers have provided feedback for it. The colors
are red, orange, light green, and dark green that correspond to no (zero of three crowd workers said
yes), low (one of three), medium (two of three), and high priority (all three), respectively. While
experts were shown the color legend that used the word “agreement,” for clarity, we henceforth
refer to it as crowd worker “priority.”
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5 EVALUATION METHODS
Heer [35] states that the evaluation of systems that use shared representations must consider
both “task time and quality measures, as well as more qualitative concerns regarding participants’
perceived autonomy and creativity of action.” Along similar lines, we seek to form a holistic
understanding of how GroundTruth supports experts in performing image geolocation with crowds,
and posed the following research questions:
RQ1 Performance: How well did experts and crowds perform image geolocation together using

GroundTruth?
RQ2 Experience: What were experts’ experiences of using GroundTruth to work with crowds in

geolocating an image?
We conducted an exploratory evaluation in which geolocation experts worked with crowds from

MTurk to geolocate images. Our mixed-methods approach included a think-aloud protocol and
analysis of system log data, followed by in-depth, semi-structured interviews. Below, we describe
the setup for our study, expert recruitment, the study procedure, and qualitative and quantitative
data collection and analysis methods.

5.1 Image Dataset Selection
To provide a controlled “playground” for experts with different skill sets and who are used to
geolocating images in different contexts, we selected a diverse set of images to geolocate, in terms
of possible challenges and strategies. We randomly chose coordinates—using guidelines provided
by Mehta et al. [60]—that matched each of 24 triplets (6 biomes × 2 population density types × 2
language types), and excluded those that were of prominent locations or had identifying location
markers. We then obtained their respective ground-level photos using Google Street View in
GeoGuessr to remove road names. The resultant set of 24 images were displayed randomly in an
image gallery that experts could choose from.

Now, image geolocation can involve manually searching an area as small as a town, to as large
as a country [60]. Thus, due to time constraints with these experts and to ensure that they each
had a similarly sized, manageable search area, we narrowed the search area to one that was 240 to
300 times larger than the area that was depicted in the ground-level photo. This varied based on
the diagram width that the expert selected. The narrowed search area was in the form of a green
rectangle, that encompassed the image location.

5.2 Expert Recruitment
We recruited 11 participants (experts) with expertise in image verification and geolocation, defined
as performing verification/geolocation on a weekly basis for at least one year. To reach the widest
audience possible in this relatively small population, we recruited participants using purposive
sampling [62]. This involved advertising our study on Twitter with a link to a screening survey. We
also reached out to experts that had previously participated in our design process, as well as others
that we found online via email. We paid experts $75 for taking part in a 90-minute study, which is
commensurate with their specialized skills. After 11 experts, we reached theoretical saturation and
concluded recruitment.
After recruitment, we asked experts to fill in an online consent form and pre-survey, and

scheduled a date for the study. Experts self-reported belonging to a wide range of domains, including
journalism, law enforcement, human rights/war zone investigation, and financial intelligence. Two
experts identified as female and nine as male; and ranged in age from 18 to 45, with a median age of
32. Nine participants identified as White/Caucasian, one as Asian, and one as Asian American. We
include seven participants’ full names and affiliations, while four participants expressed wanting to
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Name Gender Age Country Profession Organization Yrs.
Lorenzo Romani Male 30–35 Italy OSINT Analyst Anon. Intelligence Firm 4
Dakota Flournoy Female 26–30 USA Journalist Storyful 3
John* Male 36–40 Europe Senior Analyst Anon. Military 15+
Jack* Male 30–35 Canada Investigator Anon. Intelligence Org. 1
Aqwam Hanifan Male 26–30 Indonesia Reporter Tirto.id 3
Alec* Male 18–25 USA Consultant Anon. Intelligence Firm 1
Benjamin Decker Male 30–35 USA Researcher Harvard University 5
George* Male 41–45 USA Investigator Anon. Police Dept. 16
Neil Seward Male 18–25 Canada Manager Anon. Bank 9
P. Kim Bui Female 36–40 USA Director Anon. Newspaper 15
James O’Brien† Male 46–50 USA IT Consultant Self-Employed 18

Table 1. Expert participants and demographics. *= Anonymized, †= James_FP session.

remain anonymous. We believe these experts are accurately able to assess the pros and cons of
being identified because of their professions: as journalists who are often in the public eye, and as
intelligence analysts who are aware of various security and privacy related issues. McGregor et
al. [59] also found that journalists were able to accurately assess similar security and privacy issues.

5.3 CrowdWorker Recruitment
We used LegionTools [25] to facilitate real-time, expert–crowd interaction. The retainer mode
allowed us to recruit unique crowd workers for each session from Amazon Mechanical Turk
(MTurk), with no qualifications except for being USA-based. This was to ensure that a large a pool
of crowd workers would be available to work in a short period of time. Prior to accepting the task,
crowd workers were asked to provide consent. Once recruited, they finished a tutorial and were
then pooled up at a waiting page. This pooling was necessary to facilitate a real-time experience
for experts. Based on pilot studies, it takes 10–15 minutes to pool 30 crowd workers.
We paid crowd workers $7.50/hr for the time they were active in our task, i.e., completing a

short 2-minute tutorial and working on a 10-minute task. While they waited for the expert to
specify the search area, we paid crowd workers $2.00/hr (for up to 15 minutes). While waiting, we
informed crowd workers that they could complete other tasks, and would receive a browser pop-up
notification when our task was ready. The total pay per task was at most $2.00.

5.4 Procedure
Before each session, experts filled in a consent form and pre-survey asking about demographic
information (Table 1) and work practice. Then, we presented each expert with a walkthrough of
the system, asked them to perform an image geolocation task, and conducted a semi-structured
interview on their experience. All eleven sessions were run over video chat software (Zoom).

We first demonstrated how GroundTruth worked with a walkthrough, and provided a high-level
overview of the system’s underpinnings. After clarifying any questions, we gave each expert a link
to the aforementioned image gallery. Here, we instructed them to choose one image to geolocate,
that was similar to what they would typically encounter in their work. After each session, we
removed the image that they picked from the gallery, so that no two experts would geolocate the
same image. This was to elicit diversity in terms of techniques and challenges.
Next, we asked them to rate how difficult the image would be to geolocate using a seven-point

Likert scale (Table 2). Then, we provided a narrowed location (240 to 300 times larger than the area
depicted in the photo) to reduce the search area to a manageable size, and due to time constraints.
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We used a think-aloud protocol [20] for the rest of the session, where we asked experts to
externalize their thoughts. To familiarize experts with the protocol, we asked them to practice
using the protocol on an unrelated task (using a search engine to find a desktop wallpaper).
We then asked experts to spend at most 10 minutes drawing the aerial diagram that the crowd

would use. They went through the four-step process on the expert interface (as in Section 4.3),
using the tooltips provided. Once they had specified the search area, the system divided it into
smaller cells (based on the width chosen), and were given to the crowd to provide feedback.
In parallel, crowd workers were hired using LegionTools, who completed a tutorial and were

sent to a waiting page. We hired crowd workers when the expert began to draw the aerial diagram.
Once the expert had specified the search area, we routed crowd workers from the waiting page to
the task page to work on the task.

As the heatmap populated crowd feedback, experts inspected each cell of satellite imagery, and
provided their judgments on whether or not it contained the correct location. We gave each expert
a time limit of 30 minutes, at the end of which we asked them to pick a cell that they believed
contained the image, if they hadn’t already. They were informed that the narrowed search area
they were provided contained the correct location. We also provided one expert (James) with an
area that did not contain the correct location. We will refer to James and his session as James_FP.

After they picked a cell that they thought contained the correct location, we conducted in-depth,
semi-structured interviews with each expert, asking them about their overall experience using
GroundTruth, their use and perceptions of the heatmap, how using the system compares to current
practice, how they see it fitting into their work, among other questions.

5.5 Data Collection and Analysis
The audio and video of each sessionwas recorded using Zoom, and fully transcribed. Sessions ranged
from 68 to 112 minutes (median = 80). The first author of this work conducted each session and
took detailed notes [76] both during and after each session on how the expert utilized GroundTruth.
The notes recorded every time the expert commented on, or reacted to crowd feedback; what cells
they looked at; any issues they faced with the user interface; and other points of interest. Notes
were subsequently incorporated into each transcript.

Next, we conducted a deductive thematic analysis [15] of the transcripts, based on themes
relevant to our research questions and three system components. These themes describe experts’
behavior while using GroundTruth and their reflective experiences afterwards (RQ2): drawing the
aerial diagram, using the grid and the heatmap with crowd feedback, among others.

To analyze expert performance (RQ1), we determined how far the location that the expert selected
was from the location in the ground-level photo, in terms of distance and number of cells. We also
calculated how long experts took to do so, from the moment they specified the search area. We
also asked experts to rate how difficult the image would be to geolocate.
To analyze each crowd’s performance (RQ1), we determined how long they took to provide on

the cell that contained the ground-level photo, and on the entire expert-specified search area. We
also calculated what percentage of the search area they were able to rule out while retaining the
correct cell, and what percentage of cells they indicated as low, medium, and high priority. Here,
the correct cell is the cell that contains the location in the ground-level photo. To analyze their
feedback, we relied on the one-yes rule proposed by Kohler et al. [46] for calculating aggregated
crowd worker performance in image geolocation tasks. The one-yes rule states that if at least
one crowd worker said that a cell and the aerial diagram match, then that particular cell would
be classified as a possible match. Conversely, a cell will turn red if all three workers said that
there is no match to the aerial diagram. This helps ensure that a needle-in-a-haystack problem
like geolocation—where there is only one correct answer—will not be overly aggressive in ruling
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Name Lorenzo Dakota John Jack Aqwam Alec Ben George Neil Kim James†

Image Location Albuquerque,
NM, USA

Ft. McPherson,
Canada

Bangkok,
Thailand

Stockholm,
Sweden

Honolulu,
HI, USA

Simav,
Turkey

Capetown,
South Africa

Dubai,
UAE

Southampton,
UK

Majorca,
Spain

Jambi,
Indonesia

Image
Difficulty* (-3,+3) 3 1 1 0 -2 2 3 3 2 1 2

Cell Width
(m) 100 200 100 200 100 100 100 500 100 200 100

Ex
pe

rt Regions
Specified

(size in km2)

12
(1.92)

12
(7.68)

9
(1.44)

18
(11.52)

9
(1.44)

9
(1.44)

12
(1.92)

9
(36)

15
(2.4)

12
(7.68)

9
(1.44)

Cells From
Correct Location

(number)
1 0 7 0 0 2 0 0 0 2 N/A

Time to Find
Image Location

(min.)
23 6 29 2 10 14 3 27 6 25 6

Time to Cover
Search Area

(min.)
22 16 7.5 22 10 11 10 8 17.5 20.5 7.5

Included Cell
with Image? Yes Yes Yes Yes No Yes No Yes Yes No N/A

Time to Include
Cell with Image

(min.)
11 13.75 5 22 N/A 5 N/A 7 16.5 N/A N/A

C
ro
w
d

Search Area
Reduced (%) 66.5 40.8 40.6 42.9 27.3 39.9 53.9 30.1 41.8 47.1 41.7

Low Priority
(%) 73.4 81.4 49.4 60.4 57.7 43 68.2 46 57.6 67.3 48.8

Medium Priority
(%) 20.3 15.9 29.4 32.3 27.9 36 21.6 32 31.7 26.7 41.7

High Priority
(%) 6.3 2.7 21.2 7.3 14.4 21 10.2 22 10.8 5.9 9.5

Table 2. Expert and crowd session details and performance. *= Image difficulty was assessed using a seven-
point Likert Scale ranging from from extremely easy (-3) to extremely difficult (+3). † = James_FP session.

out possible cells. We made this conservative decision because incorrectly discarding the correct
location is worse than keeping an incorrect one. A long tail distribution among the three priorities
(with fewer high priority cells) is indicative of better performance since the crowd is able to better
direct an expert’s attention.

5.6 Limitations
We are unable to draw conclusions across participants because we recruited experts from different
fields that involve image geolocation, and no two experts geolocated the same image. However,
this allowed us to highlight the diversity of challenges faced and strategies employed by experts in
geolocating images with crowds.
Further, geolocation involves considering context, searching social media for corroborating

sources, and inspecting visual clues, only resorting to brute-force satellite image search when
earlier steps are insufficient. In our study, images contained no context within them, which is not
typical of how experts encounter images in their work. However, this allowed us to simulate the
brute-force step of image geolocation, when other approaches have been exhausted.

Finally, due to experts’ time constraints, we limited each session to about 90 minutes and experts
did not go through the full image geolocation process, focusing only on the brute-force step.
However, this created a time-compressed situation where experts might normally seek others’ help.
Experts’ time constraints, coupled with the typical duration of an image geolocation task (hours to
days [32, 36]) also meant that it was infeasible to obtain a baseline. Future work should also study
expert performance without crowd support, to obtain baseline performance metrics.

6 RQ1: HOWWELL DID EXPERTS AND CROWDS PERFORM?
In this section, we summarize how experts rated the images in terms of difficulty to geolocate,
experts’ and crowds’ overall performance, an analysis of how expert-drawn aerial diagrams affected
crowd performance, and how crowd feedback affected expert performance. The correct cell is
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defined as the cell that contains the location depicted in the ground-level photo. Table 2 includes
detailed information about each expert’s session.

6.1 Image Difficulty
Experts evaluated image difficulty on a seven-point Likert scale ranging from extremely easy (-3) to
extremely difficult (+3), with a median rating of moderately difficult (+2), and only two as easy (<0).
Experts said that the images we presented to them in the image gallery did not have any clues

within the images that would have helped them find it easily, and that it would have been difficult
to geolocate without the initial clue that we gave the experts (typically, they would rely on clues
associated with or present within the image, see Section 2). Once we provided experts with a hint
that narrowed the search location to an area that was 240–300 times the width they estimated
for the ground-level photo, some experts thought the image was easier to find than they initially
thought, while others thought it was harder to find.

6.2 Overall Performance
Overall, experts ranged from identifying the single correct cell to selecting a cell no more than
seven away. While six experts identified the correct cell, the other four were an average of three
cells away. Note that the cell widths chosen by experts here varied from 100 to 500 meters (the
system allows for cell widths between 100 to 1000m.). They took between 2 and 29 minutes (mean
= 13.7), with the session capped at 30 minutes.

Crowd workers took between 8m 20s and 22m 10s to provide feedback on the entire search area
(mean = 13m 5s). They narrowed the search area by 27.3 to 66.5% (mean = 43%) for an area that
ranged from 144 to 288 cells (1.44 to 36km2, mean = 6.81km2). In 7 out of 10 cases, crowd workers
were able to identify the correct cell in a search area of 144 to 288 cells, taking between 5m 16s to
22m 10s (mean = 11m 37s). Crowd workers ruled out the correct cell in three instances, excluding
the James_FP session where the search area intentionally did not contain the correct location.
For the three sessions where the crowd did not identify the correct cell, two experts (Aqwam,

Ben) pinpointed the correct location within 10 minutes. On the other hand, there were three cases
(Lorenzo, John, Alec) where experts were, on average, 350m away from the correct location. Here,
the crowd marked the correct location in green within 11 minutes. In other words, there was only
one session (out of ten)—Kim’s—where both the crowd and expert did not pinpoint the correct
location.

6.3 Effect of Aerial Diagram on Crowd Performance
The characteristics of the aerial diagram, such as how easy it was for crowds to interpret, whether
it incorporated real or imagined features, and how common those features were in the satellite
imagery, affected how well the crowd performed.
In sessions where experts depicted unique architectural and structural features in their aerial

diagrams, and/or where the search area consisted of satellite imagery that was easy to rule out,
the crowd performed well. For example, in Lorenzo’s session, the crowd was able to reduce the
search area by 66.5% because the diagram contained roads, while large parts of the search area
consisted of shrubland without roads. In addition, 73.4% of the remaining search area was marked
as low priority (yellow, one crowd worker said the cell matched the diagram), 20.3% as medium
(light green, two), and 6.3% as high (dark green, three). In Dakota’s session, although the crowd
eliminated 40.8% of the search area from the search, we still observe a long tail in terms of priority:
2.7% of cells were marked as high priority, one of which was the correct cell.

When the expert’s aerial diagramwas unclear, or whenmultiple cells of satellite imagery appeared
to match features depicted in the aerial diagram, crowd performance was lower than average. For
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example, in Aqwam’s session, the crowd reduced 27% of the search area (the average was 43%),
perhaps because his diagram depicted features that were not actually in the ground-level photo
or the satellite imagery. In this case, no crowd worker thought the correct cell matched the aerial
diagram. In George’s session, the crowd marked the correct cell as high priority. However, the
crowd eliminated just 30% of the search area. This may be because in George’s aerial diagram he
annotated two rectangles as “high-rise buildings” in the center of Dubai, a dense urban area with
nearly 200 skyscrapers. Similarly, in John’s session, crowd workers had marked the correct cell as
high priority. However, there were more high-priority cells than average (21% vs. 12%) because the
building he depicted in his aerial diagram had a structural feature that was common in the dense
urban area he was searching through.

6.4 Effect of Heatmap on Expert Performance
Experts used and interpreted the crowd feedback displayed as a heatmap in a variety of ways,
which affected their performance. Four experts (Lorenzo, Aqwam, Alec, George) found the correct
location using crowd feedback. Three others (John, Alec, Kim) chose cells that looked visually
similar to the correct location but were not. Here, the crowd also indicated that they looked similar
(medium/high priority). Three (Jack, Ben, Dakota) found the correct location before the crowd
could finish giving feedback for that cell. Finally, James_FP is in a separate category.

Lorenzo, Aqwam, Alec, and George found the correct location by inspecting areas that the crowd
had marked as high priority. John also inspected the correct cell that the crowd had marked as high
priority, and thought it was a possible match but then excluded it from the search. He said this was
because some features in the satellite imagery did not match due to the angle from which it was
taken. Towards the end of the time limit given, John picked a location that was 700m (seven cells)
from the correct one; crowd workers had marked the cell he chose as high priority.
Alec and Kim identified locations that looked similar to the correct one, but were not, and the

two crowds had marked them as medium priority. In both sessions, Alec and Kim directed their
search based on crowd feedback, by first inspecting high and medium priority cells. The location
Alec picked was within 200m (two cells) of the correct one. Alec said that the satellite imagery was
not detailed enough to be 100% certain of his decision. Kim managed to narrow the location to
within 400m (four cells) of the correct one. She initially disagreed with the crowd’s medium priority
level, but then changed her mind. Although Kim took 25 minutes to search through 7.68km2, she
expressed desire for another hour to verify her choice and continue searching. In Alec’s session the
crowd marked the correct cell as medium priority, while in Kim’s session, they ruled it out.

On the other hand, Jack, Ben, and Dakota knew exactly what features to look for and were able
to quickly find the correct location within 0m, before crowd feedback came in for the correct cell.
They took two, three, and six minutes, respectively. Both Jack and Dakota relied on crowd feedback
initially rule out locations, which let them quickly find the correct location. In Dakota’s session, a
large portion of the search area consisted of forests, while the ground-level photo was that of a
cylindrical structure, which is possibly why she was able to find it quickly. Jack also knew exactly
what features to look for (a bridge-like structure along a canal), and in only a portion of the search
area contained canals, making it easier to filter through. Similarly, Ben said that there were many
distinctive features in the ground-level photo that made it easy for him to geolocate.

Finally James_FP thought that he had found the correct location after six minutes of searching,
even though it was not contained within the search area that he drew. James_FP mentioned that
without recent, high-quality satellite imagery, it would be difficult to directly confirm whether or
not it was the correct location.
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7 RQ2: WHATWERE EXPERTS’ EXPERIENCES OF USING GROUNDTRUTH?
Overall, experts said that they were excited by the potential for GroundTruth to scale up expertise
in fields such as journalism, human rights advocacy, and criminal investigations. They mentioned
specific benefits such as training new investigators, and enabling quicker and better support from
crowds, and that it may even save lives.

7.1 Aerial Diagram
7.1.1 Determining the Width. Experts varied in their ability to estimate the width of the ground-
level photo. Some, like Ben and Lorenzo, were able to quickly and accurately make a reasonable
guess. For example, Ben’s strategy involved extrapolating from smaller objects of known size: “so
if it’s one lane, [it’s] essentially one car, which means somewhere between four and seven feet across
approximately.” Other experts, like Kim, found the task more challenging. Kim said, “the width is
hard for me. I’m not a good judge of distance whereas many other people are. I’m pretty terrible at
knowing what 300 feet is.”
In designing GroundTruth, we included the width estimation step for the practical purpose of

leveraging expert knowledge to determine an appropriate cell width for crowd workers. However,
some experts found that the step also supported their own spatial reasoning by prompting them to
reflect on the relative proportions of key objects. For example, Dakota said, “that’s very helpful. . . [to]
estimate the proportions of the area. You know, in reference, I didn’t know it was next to a river and
that helped me get a sense of how big of an area I need to be looking in.”

7.1.2 Drawing the Diagram. While drawing the diagram, experts highlighted salient features in
the photo that they thought would be visible on satellite imagery. Some experts chose to label their
diagrams, while others only drew the outlines of buildings and roads. Many noted that drawing
aerial diagrams is a skill that is developed over time. For example, Kim said, “I know to do buildings
and big roads. . . but they don’t always think about trees, driveways, the color of the roof, the smaller
details. I always tell people not to look in the foreground but to look in the background of images, and
that’s a bit of a training process.” In her diagram, Kim provided crowd workers key features to look
for, such as “white shutters, roof tiles, and a large, green lamp.”
Eight out of eleven experts elected to draw the diagram by hand and upload a digital photo,

while three used digital drawing tools: Microsoft PowerPoint (George), Microsoft Paint (Lorenzo),
and Adobe Photoshop (Aqwam). Experts who expressed the preference for drawing it by hand
explained that it was quicker, as well as easier to represent certain features and make annotations.

Reflecting on their experiences using the diagram, and viewing crowd feedback on the heatmap,
all experts felt that they would have drawn the diagram differently and taken more time to do
so. Since the GroundTruth diagram is dual-purpose in nature, experts grappled with drawing the
diagram just for themselves versus also drawing for crowd workers. Experts said that determining
what features to include within their diagrams, and what to exclude, was crucial. George explained:

I probably would have taken about an hour to do it versus 10 minutes because I think crap
in equals crap out. . . If you don’t have a quality diagram that really conveys what you’re
seeing, you’re going to get those false positives. . . and I take full ownership for that just
based on the poor accuracy of my diagram.

Kim and Ben wanted to communicate more detail to the crowd on what to look for in the form
of a list or detailed notes. Kim said, “I would have said, ‘I don’t think this is in an extremely rural
area, or in the middle of a city. It seems like it’s in the outskirts of a city, keep an eye out for X, Y, Z.’”
John and Dakota both highlighted their “extremely limited artistic ability” which was sufficient

for their own purposes but, they worried, not for crowds. John proposed that getting feedback from
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crowd workers on his diagram would help him improve. Alternatively, experts expressed a desire
to have a built-in tool to draw the diagram with pre-specified symbols to reduce uncertainty for
crowds and speed up the process. For example, Alec said, “It’s a good process, but to make it more
streamlined you might want have a key of labels you can put on it. . .Maybe set symbols for certain
things, because I wasn’t sure what to put for a tree.” Other possibilities suggested by experts included
outsourcing this task to a graphic design expert or even another set of crowd workers.

7.1.3 Using the Diagram. Many experts made references to the diagrams they had drawn. John,
Dakota, Alec, andNeil looked at the diagram on the interface intermittently to compare it to feedback
that crowdworkers had provided, whereas Ben, Aqwam, and James_FP frequently switched between
using the diagram and the ground-level photo. Kim preferred to use the physical diagram she had
drawn because “I can rotate it [on the interface]. But this is literally what I’m doing on paper. . . I’m a
super tactile person.” Lorenzo said that he uses aerial diagrams in his work practice, but did not use
the digital diagram during his session, relying solely on the ground-level photo.

7.1.4 Diagram as Privacy Protector. Experts also identified privacy benefits related to using an
aerial diagram. Because the diagram can abstract away or hide certain sensitive details, experts
believed it allowed for more sensitive investigations to be crowdsourced than would typically be
possible. John explained:

There wasn’t much that was actually shared because it was only the diagram. . . There
was no context that was actually given to the crowd worker. Whereas if you give someone
a photograph, let’s say for a war zone or something like that, then that can contain the
kinds of information that you necessarily don’t want to give out to other people.

George compared the diagram to police sketches of suspects drawn with the help of eyewitnesses:

It’s not a photograph of the actual suspect. It’s a rendering of the interpretation from both
victim and artist working cooperatively. This is the mapping equivalent of that where
you’ve got an analyst who’s rendering based on a slice of imagery but then it gets provided
to the crowd.. . . I don’t think we’d run into any privacy issues with that.

7.2 Gridded Map Overlay
7.2.1 Grid as an Organizational Tool. Some experts would search in a linear fashion through the
cells, ruling them out one by one, only deviating when they saw potential matches along the way.
Others would search through the grid based on where crowds had (or had not) provided feedback.
George and Kim said that the grid allowed them to keep track of where they had searched before,
because without it, there would have been a higher tendency to wander across the map haphazardly.

Lorenzo, John, Jack, Aqwam, and Kim extensively utilized the Exclude button to mark cells they
had examined and ruled out. Beyond excluding cells, Lorenzo, John, and Kim expressed the desire
to have a Possibly button for them to mark cells that they had examined but not fully ruled out.

7.2.2 Grid as a Coordination Tool. Experts suggested that the grid can be used not only to structure
their search pattern, but also to aid in coordination between an expert and crowds. Kim and
John proposed that another potential use of the Exclude button could be to rule out areas so that
crowd workers would not have to review them, saving them effort and time. Dakota and John
highlighted how GroundTruth’s grid could allow them to geolocate images with their colleagues in
a collaborative manner. Dakota explained:

[I would say,] “I need your help geolocating, let’s go.” Then all of us focus on it, and really
just to narrow it down, and they say, “Okay, now we’ve got, you know, 70% or whatever
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of this grid looked at a cursory glance.” I can take it from [t]here. I think that would be
fantastic.

However, Neil pointed out that because of these experts’ limited time, and difficulties in coordi-
nation, it may be difficult to find experts.
John and Kim said that in the past, they had divided up a search area into a grid to collaborate

with others, either by sharing coordinates or printing out an entire map and indicating who should
search where. John described how he and his colleagues were trying to find Austin Tice, a US
journalist and former Marine who was abducted in Syria, based off a video that was released of him
where his captors were driving through a valley. He mentioned how GroundTruth’s grid would
have been useful in delegating work in that investigation:

It’s several tens of square kilometers, maybe a mountain range, between Syria and Lebanon
and that’s what we actually did on Google Earth. We started to draw this grid of search
areas and started to actually go through bit by bit. . .We’ve talked about it several times,
“Oh we wish that we had something like this, that would actually help us structure the
delegation of work in a smarter way.”

John added that experts do not necessarily perform the same tasks with one another, but that
“it’s one person finding something, and then they call on others to actually verify that that they agree
with that finding.” Therefore, he wished that each cell was labeled with an identifier so that it
would be easier to refer to when coordinating a search with colleagues: “Hey go look at B1 or B30 or
whatever.”

7.2.3 Grid Non-use. Three experts (Jack, Ben, Neil) did not use the grid to structure their search.
In one session, Jack, thinking that the correct location was located near a water body, immediately
began searching along the length of a canal. Similarly, Ben and Neil directed their search by first
looking at areas that they thought had matching architectural and geographical features.

Furthermore, Jack wished that the grid overlay could be turned off completely, while Neil, George
wished that the opacity of crowd worker feedback could be varied. Jack stated a preference for
searching through the map without any labels or satellite imagery, which he found distracting at
times, and view only the outlines of buildings and roads. He often looks for matching shapes in the
map first, and then looks to verify the location further once he has a potential match.

7.3 Heatmap of Crowd Feedback
7.3.1 Feedback Usage Patterns. Most experts directed their search based on crowd feedback, and
worked in real-time alongside crowd workers. Some experts (Dakota, Kim, John, Alec) described
prioritizing cells with high crowd agreement. Others (Lorenzo, James_FP, Aqwam) focused on areas
that the crowd had not yet provided feedback on.

Most experts also avoided looking at areas with low crowd agreement, other than to check how
crowd workers were performing. For example, Alec said:

They have all the red squares at the bottom, I didn’t waste my time looking at that. With
the middle area, they said it was more likely to be in there so I looked more in there. It
gave me more of a baseline to look at, we weren’t starting from scratch.

All experts used the Hide/Show Color buttons when closely inspecting cells in order to hide
crowd feedback. Unexpectedly, some experts, such as Ben, John, and Kim, also used these buttons
to deliberately—but temporarily—hide crowd feedback to avoid being ”biased” by it. These experts
elaborated that if they found a likely match first, and others independently agreed with them, it
could provide valuable confirmation. Ben described a prior experience geolocating an Instagram
video of an Islamic State fighter with his colleagues:
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We generally double blind each other and we’ll then measure up against work. . . So
nobody even discussed what they were even hypothesizing or looking at until we were all
finished. . . It could lead to some bias or something being overlooked.

On reflection, these experts noted that the nature of their work shifted from actually doing
geolocation towards verifying crowd feedback. This change was described as more of a spectrum
rather than a dichotomy. For example, John reflected that “I was waiting for the inputs to come from
others and then start verifying their findings. . . that kind of changed the way that I would normally
run the process.”

Jack, Ben, Dakota, and Neil found the correct location before crowd workers returned feedback
for that location. Jack and Ben did not rely on crowd feedback, while Neil sometimes made use of it.
Dakota relied on crowd feedback initially, but once she had inspected all cells that crowd workers
thought matched, she went on to inspect cells that had no feedback yet.

7.3.2 Feedback Accuracy and Utility. Overall, experts said that crowd workers performed well with
the diagrams they were provided. Neil and Kim were initially skeptical of crowd feedback, but then
grew to trust it. Others (Lorenzo, Alec, Dakota) trusted crowd feedback from the beginning.
Dakota, Ben, George, and John said that the most helpful part of crowd feedback was that it

helped to rule out locations, so that these experts did not have to search there. For example, Dakota
said, “The thing that [the crowd] did the best was specifically blocking out areas that didn’t include
these features, or it didn’t include them all together, which is super helpful.”

7.3.3 Feedback Speed. Most experts were impressed with how quickly crowd feedback streamed
in. However, experts had mixed opinions about whether they wanted crowd feedback to appear in
real time or to be asynchronous. Dakota and George identified certain time-sensitive applications in
their work that would benefit from real-time crowd feedback. Reflecting on his use of GroundTruth,
George said:

The most obvious benefit still is from saving time, being able to distill that larger map
into regions where I could direct my attention much more quickly than I would have
been able to do on my own. . . I think it’s very exciting what you guys are doing. . . Let me
take this opportunity to tell you that what you’re doing could save lives in that type of
[time-compressed] scenario and never forget that.

In contrast, Jack enjoys the challenge of geolocating images himself, and felt that he would only
resort to using GroundTruth when he is stumped and wants to take a break. He explained, “I could
see myself like sort of turning this on, drawing the square, going to get a cup of coffee or something,
coming back and then seeing where can I start looking, where are the dark greens, where are the light
greens.” Similarly, Ben juggles multiple projects at different stages, and said that it would be useful
if he could submit images to be geolocated, and then review crowd feedback at a later point of time.

7.3.4 Trusting the Crowd. Experts voiced several considerations that affected their willingness
to trust crowd feedback provided by GroundTruth. Building on the above discussion of cost and
incentives, Kim questioned whether paid crowds would complete the task in good faith, saying,
“Some people might be just like, ‘Let me do this as fast as I can so I get money,’ and then some
people might be legitimately enjoying the experience. So, that’s generally the plus and minus of using
[AmazonMechanical] Turk workers.” Relatedly, Jack voiced concerns about Mechanical Turk workers
providing crowd feedback because he said their anonymity limits accountability.

Taking this idea further, Ben worried about the potential for adversarial crowd workers to hijack
or mislead a GroundTruth investigation:
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. . . oftentimes the geolocation happens to be around something political. Particularly if it’s a
war crimes investigation, or some sort of criminal act that’s being investigated. Inherently,
there’s going to be opinions that attempt to [alter] the perception of the outcome, whether
that means brushing it under the rug, whether it means hyperbolizing it, etc.

John wished that the system could be set up such that he could work only with people that he
trusts and have been previously vetted:

That we could actually split the works work amongst ourselves so not necessarily outsource
to anybody else. But we would need a controlled platform where we can bring in trusted
partners and people we know, [and] people who know what they’re doing, basically, and
then actually split the tasks between them. . . .

7.3.5 Cost and Incentives of the Crowd. Two experts who worked for the private sector (Alec, Neil)
said they felt that the actual cost of running their sessions ($2 per crowd worker, approximately
$60–120 per search area) was very reasonable given the speed with which feedback streamed in.
Kim, a journalist, said that while paying workers would be useful for breaking news desks, it would
depend upon each organization’s budget.

Furthermore, although several experts felt that workers should be paid a fair wage for their time,
John and Jack, who work with a volunteer-based group of open-source investigators, said they
doubted that paid crowds would be necessary for their work. They had the ability to mobilize a
large number of volunteer crowds on social media, and had already done so for investigations in
the past. Building on this idea, Ben was enthusiastic about GroundTruth’s ability to democratize
open-source investigations by allowing non-experts to make valuable contributions, as well as
empowering experts:

. . . it demonstrates the opportunities to do verification at scale, that is truly unique. And I
think that really empowering the much larger investigations, is a really significant value
add for the research and journalism communities. Especially [when there] are a limited
number of people who have these skills.

8 DISCUSSION
8.1 Designing Shared Representations for Image Geolocation
We designed GroundTruth to help crowds augment experts’ complex sensemaking task of image
geolocation, drawing inspiration from Heer’s notion of shared representations in mixed-initiative
systems [35]. In this section, we reflect on the successes and challenges in adapting the principles
of shared representations from AI to crowds within the context of image geolocation.

8.1.1 Shared Lens. GroundTruth provided a shared lens between experts and crowds to support
Heer’s first principle of providing the user with significant value and promoting efficiency, correct-
ness, and consideration of alternatives. The shared lens took the form of an aerial diagram drawn
by the expert and shared with the crowd.

Diagramming for a crowd. Our prior work [46] showed that crowds using just a ground-level
photo to search satellite imagery lead to unacceptably high false negatives, whereas a perfectly
drawn aerial diagram dramatically improved crowd performance. However, little was known about
how well diagrams drawn by real geolocation experts would fare. The positive results of our
evaluation suggest that, following Heer’s first principle, real diagrams do enable valuable crowd
performance, helping the expert work more efficiently and correctly by prioritizing high-agreement
cells. Aerial diagrams provided a shared lens that helped close the expertise gap between experts
and crowds in two ways. First, they bootstrapped the expert’s traditional process to leverage spatial
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reasoning and mental rotation skills that novice crowds lack. Second, experts drew on experience
to focus the crowd’s attention on key elements (i.e., permanent, unique), while omitting the rest.
More broadly, our evaluation illuminated how drawing an aerial diagram for one’s self differs

from one intended to be a communication tool for an unknown crowd of novices. Experts also
described additional benefits of the diagram we had not considered, such as its privacy-preserving
attributes that can protect both the investigation and the crowd. However, the dual goals of a
diagram in the context of GroundTruth also raised new challenges and concerns. Some wanted to
include additional details and context that would not benefit themselves, but might help clarify
meanings for the crowd. Prior work has found that such shared context is important when dividing
a task into microtasks [73], even when performed by the same person (e.g., selfsourcing [81]).

Providing these details would require extra time and labor, so experts also suggested better tools
for rapidly drawing diagrams, such as a library of symbols for common objects (e.g., buildings,
intersections, bridges), as seen in creative contexts [48]. Besides speeding up the drawing task,
regular use of these tools could further streamline communication between experts and crowds.

Benefits of drawing experience. While all experts had deep experience with image geolocation,
not all of them were familiar with aerial diagramming, resulting in lower-quality diagrams. This
gap speaks to the multi-step process of traditional image geolocation, where experts only resort
to brute-force satellite imagery analysis when previous steps are insufficient [14, 46]. While our
diversity of experts and images prevents direct comparisons, it is suggestive that the three experts
who voiced the least confidence and experience with diagramming (John, Kim, and Alec, see
Section 7.1.2) also returned the largest distances from the target location (700m, 400m, and 200m,
respectively, see Table 2). These results point to the benefits of expert training or experience in
drawing diagrams for themselves as well as the crowd.

8.1.2 Shared Environment. We designed GroundTruth to provide a shared environment in the form
of a gridded map overlay. Heer’s second principle specifies that agents should augment but not
replace user interaction, blend in nondisruptively, and be easily invoked or dismissed. Along these
lines, crowd feedback is visualized on the same grid that the expert uses to search the imagery, but
can be toggled on and off, while still retaining the experts’ own decisions to exclude cells.

Support selfsourcing. We designed GroundTruth’s gridded map overlay primarily to support
expert–crowd interaction, explicitly prioritizing experts’ decisions over the crowd’s. Most experts
emphasized how it enabled them to visualize and act on crowd feedback while retaining agency
[35]. However, we were surprised by how many experts found the grid to be helpful per se in
enabling them to systematically search a region and mark off cells using the Exclude button. For
these experts, the grid supported a selfsourcing [81] practice not readily available in existing tools.
One expert further suggested the ability to judge a cell as Possibly a match, in addition to the
current Exclude option, to flag it for closer inspection after an initial pass.

Symbols and structures. Experts suggested mechanisms within the grid that could more effectively
support collaborative search. One suggested unique identifiers for each cell to enable easy reference
when communicating with colleagues. If implemented, such a feature could leverage existing
geographic identifier schema such as What3words [6] for integration with broader volunteered
geographic information (VGI) efforts. Another expert suggested the ability to label or add notes to
individual cells, either for themselves or direct the crowd in a more nuanced manner.

8.1.3 Shared Analysis. Heer’s third principle embraced augmentations that required neither perfect
accuracy nor exhaustive modeling of the user’s task to be useful. Likewise, GroundTruth supported
a shared analysis where crowds would contribute to one module of the broader image geolocation
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pipeline: satellite image search. Further, as our prior work suggested that an ideal setup yields a
50% false positive rate [46], we anticipated crowd analysis would be useful, but imperfect.

Crowd analysis with real experts. Our evaluation found that crowds augmented experts’ work in
ways that were useful without being completely accurate or exhaustive. Even with real experts,
authentic diagrams, larger search areas, and more diverse images, crowds reduced the search areas
by an average of 43%, comparable to the false positives for an ideal setup seen in prior work. Indeed,
there was only one session (of 10) where both the crowd and expert missed the correct location
(see Section 6.2 for more details). Taken together, our results not only show that the crowd’s shared
analysis augmented expert performance in realistic settings, but also suggest that experts might do
better to pay closer attention to the crowd’s feedback.

Optimizing crowd allocation. While experts valued crowd feedback, they also suggested ways
that GroundTruth could better allocate worker effort. For example, the system hires multiple crowd
workers to review every cell, regardless of the expert’s judgements. However, if an expert excludes
a cell not yet reviewed by the crowd, the system could remove those tasks from the worker queue
as redundant, allowing workers to focus on other cells. While prior work have also implemented
multi-step aggregation and review pipelines [12, 41, 50, 57], in this scenario, workers released from
redundant cells would be dynamically reallocated to high priority cells to provide another layer
of review prior to expert verification. An expert also requested the ability to define the initial
investigation area as a polygon rather than a square, to capture nuances of geography and avoid
low-probability areas like mountains or bodies of water.

8.2 Enriching Expert–Crowd Collaboration in Investigations
The previous section discussed how we adapted three of Heer’s principles of shared representations
to support crowd-augmented expert image geolocation, a subset of image verification investigations.
However, Heer [35, p. 2] actually enumerates four principles inspired by Horvitz’s guidelines for
mixed-initiative user interfaces [37]. The fourth principle states that “through interaction, both
people and machines can incrementally learn and adapt.” As with the other three, this principle
requires some translation to apply it to expert–crowd interactions, rather than users and AI agents,
but the effort yields a valuable perspective. We propose three areas of future work inspired by our
experiences with GroundTruth that suggest how learning and adaptation between experts and
crowds can enable more productive collaboration on other types of investigative and analytic tasks.

8.2.1 Enrich Expert–Crowd Interaction. Above, we reviewed prior work on requester–crowd in-
teraction models, suggesting that innovations in real-time crowdsourcing have enabled richer
interactions between requesters and crowds. These interactions can be imagined along a spectrum
of increased requester participation. One class of projects employs a hand-off model where re-
questers specify some initial criteria and then a crowd rapidly completes the tasks largely on its
own [11, 50]. A second class has a requester interact sporadically with the crowd, providing facilita-
tion and guidance as required, either with the meta-workflow [13, 58] or the task itself [12, 17, 51].
A third class, which we called crowd-augmented expert work, has experts (i.e., requesters with
valuable task-specific skills) working alongside the crowd and performing a superset of the crowd’s
tasks, with crowd results streaming in and influencing the expert’s own work [8, 48, 53].
While GroundTruth embodied the crowd-augmented expert work model within the domain

of visual search, the flow of information between experts and crowds was nevertheless highly
constrained. Experts defined a search area and diagram for crowds, while crowds returned search
results to experts for review. A two-way flow of information might allow experts and crowds better
adapt to each other’s progress, increasing efficiency and accuracy, albeit with higher collaboration
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costs. Prior work such as Crowdboard’s virtual sticky notes [8], Apparition’s synchronized can-
vas [48], and structured communication for writing tasks [73] suggest domain-specific mechanisms
for richer expert–crowd interactions that could be adapted for analytic tasks like visual search.

Taking this idea further, a growing body of research explores how crowd collectives could address
power imbalances between requesters and workers on crowdsourcing platforms [30, 71, 89]. On the
other hand, crowdsourced investigations lacking expert oversight are often problematic [63, 93].
Richer two-way communication between experts and crowds could better harness their comple-
mentary strengths. Workers might contribute insights and voice concerns about an investigation,
while experts bring leadership, professionalism, and investigative expertise to guide the crowd.

8.2.2 Help Crowds Learn Valuable Skills. Heer’s idea of incremental learning aligns with recent
crowdsourcing scholarship on supporting more complex and creative tasks, and providing more
meaningful work experiences for crowd workers beyond the scope of the current task. One thread
of research has explored providing just-in-time learning for novice workers to gain task-specific
skills [57, 65], with recent work suggesting that crowds can gain more generalized skills and
knowledge within the context of microtasks [30, 86]. Crowd workers can also learn from previous
workers through a shared memory space [26, 51]—a type of shared representation between crowd
workers across instances—that ensures that new crowd workers can quickly adapt to a particular
expert’s diagrams and working style. Another thread of research seeks to offer novice crowds
career ladders and paths to more financially and intrinsically rewarding work [79]. Enriching
expert–crowd interaction requires expanding the typical dichotomy of experts and novice crowds,
creating intermediate roles that workers can claim as they learn skills and gain knowledge that
helps them participate both in the task at hand, and the broader labor market. For instance, what
would it mean to train crowd workers to help with other steps in the investigation pipeline?

8.2.3 Engage Diverse Crowds. A focus on crowd learning also directs attention to the composition
and diversity of crowds in expert–crowd collaboration. Most real-time crowdsourcing research
hires paid crowd workers, who are assumed to be novices and largely transient beyond one task
session [72]. Our work with GroundTruth was no exception, though our evaluation revealed
that many experts preferred other types of crowds. Some experts worked as freelancers or in
cash-strapped organizations where budgeting regular crowdsourcing payments seemed infeasible.
Others had access to volunteer novice crowd labor, either through institutional programs or social
media followers, that mitigated the need for payment. Still others proposed using their colleagues
as crowd workers, drawing on their expertise and mutual trust to speed up searches and improve
accuracy. Beyond this diversity of incentives motivating crowd work, a diversity of demographics,
experiences, and geographic locations may streamline investigations by allowing experts to solicit
specialized knowledge from the crowd.

8.3 Generalizing Shared Representations
While this paper focuses on image geolocation, we suggest that shared representations can be
adapted to other complex tasks and domains where crowds support expert investigative work.
Most similarly, shared representations could enable other types of crowdsourced satellite image
analysis, such as natural disaster damage assessment [77]. They could also help with other types
of “needle-in-a-haystack”-type visual search tasks, such as identifying objects to combat human
trafficking [5], identifying people in historical photos [61], or finding missing pets after a crisis [88].

More broadly, shared representations may benefit sensemaking activities for which searching is
only one of many foraging and synthesis tasks. As discussed in Section 2.2, image verification is a
sensemaking activity encompassing not only image geolocation, but also consideration of other
types of visual clues in the photo of interest, as well as the broader context about who posted the
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photo, when, and why. This and other sensemaking domains also require analysis of non-visual
material, expanding the notion of a shared lens to other media. For example, crowds could augment
expert analysis of textual data to perform bottom-up qualitative content analysis [9], to investigate
evidence documents to solve a crime [27], or to compare features when shopping for an unfamiliar
product [43].
Finally, it may be possible to extend the utility of shared representations beyond the analytic

tasks addressed by this paper and by Heer [35], which pose unique constraints [21]. Systems like
Crowdboard [8] and Apparition [48] illustrate how crowd-augmented expert work can support
generative tasks like ideation and prototyping, while other models of expert–crowd interaction
support creativity in domains like writing [40]. Designing such shared representations, and under-
standing how they must differ from those presented here, requires a detailed understanding of the
activities that a user engages in during the sensemaking process [64]. We can gain this knowledge,
as in GroundTruth’s example, by working closely with real experts to understand their current
practice, needs, and attitudes.

8.4 Broader Impacts
GroundTruth has the potential to save expert investigators time and scale up their expertise, as well
as possibly save lives. It contributes to democratizing the field of visual investigation, empowering
newcomers and novices to help debunk misinformation, and responds to a growing need for tools
to support information credibility assessment [84]. However, technology can also have negative
impacts [34]. Indeed, GroundTruth could be used by oppressive governments to geolocate images,
or hijacked by troll farms to skew investigations. Further, by supporting visual investigations,
we may contribute to the growing atmosphere of surveillance and indifference towards privacy.
Overwhelmingly, however, we believe GroundTruth can be used to do more good than harm.

9 CONCLUSION
In this work, we extended the concept of shared representations to crowd-augmented visual search,
in which experts guide and work with a crowd to perform image geolocation. We explore this
through our system, GroundTruth, that consists of the shared lens of an aerial diagram, the shared
environment of a gridded map overlay, and the shared analysis of crowd feedback. Experts were
successfully able to work with crowds on an image geolocation task, and we draw implications for
enriching expert–crowd interaction in investigative work, and designing shared representations in
domains ranging from creative writing to humanitarian crisis response, and beyond.
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